NÚMEROS SEQU]ENCIAIS DE GRACELI.
É TODO TIPO DE NÚMERO EM SEQUÊNCIA QUE É PRODUTO DE UM DIVISÃO.
COMO:
PI / 1.1. =
PI / 1.11 =
PI / 1.111 =
1 / PROGRESSÃO DE TRES [3]. =
4 / 3 . =
E OUTROS
ESTADOS DE ENERGIAS QUÂNTICO DE GRACELI.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
[EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
-
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli +
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
-
-
DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
x
sistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
-
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
[ESTADO QUÂNTICO]
Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma
X
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
X
Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e que é, claramente, um potencial do tipo central. Na equação acima, é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva, é a massa da partícula afetada pelo potencial, é a velocidade da luz e a constante de Planck. Naturalmente, podemos mostrar que o potencial está associada a uma força sempre atrativa.
e que é, claramente, um potencial do tipo central. Na equação acima, é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva, é a massa da partícula afetada pelo potencial, é a velocidade da luz e a constante de Planck. Naturalmente, podemos mostrar que o potencial está associada a uma força sempre atrativa.
A História[editar | editar código-fonte]
Hideki Yukawa (físico teórico japonês) mostrou na década de 1930 que tal potencial resulta da interação/troca de um campo escalar massivo como o campo de um bóson, também maciço. Uma vez que o mediador do campo correspondente tem um certo alcance, que é inversamente proporcional à massa do mediador de partícula [1]. Dado que o alcance aproximado da força nuclear era conhecido, a equação Yukawa poderia ser utilizada para prever o massa de repouso aproximada da partícula mediadora do campo de força, mesmo antes de ser descoberto. No caso da força nuclear, esta massa foi previsto ser cerca de 200 vezes a massa do elétron, e isto foi mais tarde considerado ser uma previsão da existência do píon, antes de ter sido detectado, em 1947.
Tal potencial tem várias aplicações, incluindo a interacção entre dois núcleos. Dois núcleos podem experimentar forte interação atrativa devido à taxa de câmbio pions carregados, semelhante à forma como duas partículas interagem eletromagneticamente através da troca de fótons. Como o campo eletromagnético é "transportado" por fótons, o campo piônico potencial, expressamente descrito por Yukawa, é "transportado" por pions.
Hideki Yukawa (físico teórico japonês) mostrou na década de 1930 que tal potencial resulta da interação/troca de um campo escalar massivo como o campo de um bóson, também maciço. Uma vez que o mediador do campo correspondente tem um certo alcance, que é inversamente proporcional à massa do mediador de partícula [1]. Dado que o alcance aproximado da força nuclear era conhecido, a equação Yukawa poderia ser utilizada para prever o massa de repouso aproximada da partícula mediadora do campo de força, mesmo antes de ser descoberto. No caso da força nuclear, esta massa foi previsto ser cerca de 200 vezes a massa do elétron, e isto foi mais tarde considerado ser uma previsão da existência do píon, antes de ter sido detectado, em 1947.
Tal potencial tem várias aplicações, incluindo a interacção entre dois núcleos. Dois núcleos podem experimentar forte interação atrativa devido à taxa de câmbio pions carregados, semelhante à forma como duas partículas interagem eletromagneticamente através da troca de fótons. Como o campo eletromagnético é "transportado" por fótons, o campo piônico potencial, expressamente descrito por Yukawa, é "transportado" por pions.
Relação com o potencial de Coulomb[editar | editar código-fonte]
Se tomarmos o limite → (ou até mesmo a igualdade) no potencial de Yukawa, nós temos
X
Se tomarmos o limite → (ou até mesmo a igualdade) no potencial de Yukawa, nós temos
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
de modo que podemos identificar a equação acima, com a ε, como o potencial de Coulomb. Diferentemente do potencial de Yukawa, podemos ver claramente que decresce muito lentamente, enquanto que o potencial de Yukawa decresce muito rapidamente (a depender da massa m). Por essa razão, dizemos que o potencial de Yukawa é um potencial de curto alcance, enquanto que o potencial de Coulomb não é. No gráfico que é apresentado ao lado, podemos ver como o potencial de Yukawa comporta-se, com a distância , para diferentes valores de .
Em física de partículas, processo Drell-Yan é a criação de um fóton virtual a partir da combinação de pártons de dois hádrons que colidem. O subsequente "decaimento" deste fóton em um par de léptons termina a caracterização do processo. No referencial de centro de massa dos hádrons, a combinação de ordem dominante é a aniquilação de um quark de um hádron com um antiquark do outro hádron. Na ordem próxima à dominante há a emissão de um glúon (vulgo termo de aniquilação) além do fóton e também a combinação de um (anti)quark de um hádron com um glúon do outro hádron, formando o fóton virtual mais um (anti)quark (vulgo termo de espalhamento Compton).
de modo que podemos identificar a equação acima, com a ε, como o potencial de Coulomb. Diferentemente do potencial de Yukawa, podemos ver claramente que decresce muito lentamente, enquanto que o potencial de Yukawa decresce muito rapidamente (a depender da massa m). Por essa razão, dizemos que o potencial de Yukawa é um potencial de curto alcance, enquanto que o potencial de Coulomb não é. No gráfico que é apresentado ao lado, podemos ver como o potencial de Yukawa comporta-se, com a distância , para diferentes valores de .
Em física de partículas, processo Drell-Yan é a criação de um fóton virtual a partir da combinação de pártons de dois hádrons que colidem. O subsequente "decaimento" deste fóton em um par de léptons termina a caracterização do processo. No referencial de centro de massa dos hádrons, a combinação de ordem dominante é a aniquilação de um quark de um hádron com um antiquark do outro hádron. Na ordem próxima à dominante há a emissão de um glúon (vulgo termo de aniquilação) além do fóton e também a combinação de um (anti)quark de um hádron com um glúon do outro hádron, formando o fóton virtual mais um (anti)quark (vulgo termo de espalhamento Compton).
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Fontes de nêutrons[editar | editar código-fonte]
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Pseudopotencial de Fermi[editar | editar código-fonte]
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Estados de charmônio[editar | editar código-fonte]
X
X
Nenhum comentário:
Postar um comentário